A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions

نویسندگان

  • W. Y. Kong
  • V. Rokhlin
چکیده

introduce a new class of numerical differentiation schemes constructed for the efficient solution of time-dependent PDEs that arise in wave phenomena. The schemes are constructed via the prolate spheroidal wave functions (PSWFs). Compared to existing differentiation schemes based on orthogonal polynomials, the new class of differentiation schemes requires fewer points per wavelength to achieve the same accuracy when it is used to approximate derivatives of bandlimited functions. In addition, the resulting differentiation matrices have spectral radii that grow asymptotically as m for the case of first derivatives, and m 2 for second derivatives, with m being the dimensions of the matrices. The above results mean that the new class of differentiation schemes is more efficient in the solution of time-dependent PDEs compared to existing schemes such as the Chebyshev collocation method. The improvements are particularly prominent in large-scale time-dependent PDEs, in which the solutions contain large numbers of wavelengths in the computational domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Plasmonic Nanoparticles Based on Prolate Spheroids

Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...

متن کامل

Prolate Spheroidal Wave Functions on a Disc – Integration and Approximation of Two-Dimensional Bandlimited Functions

We consider the problem of integrating and approximating 2D bandlimited functions restricted to a disc by using 2D prolate spheroidal wave functions (PSWFs). We derive a numerical scheme for the evaluation of the 2D PSWFs on a disc, which is the basis for the numerical implementation of the presented quadrature and approximation schemes. Next, we derive a quadrature formula for bandlimited func...

متن کامل

Prolate Spheroidal Wave Functions In q-Fourier Analysis

In this paper we introduce a new version of the Prolate spheroidal wave function using standard methods of q-calculus and we formulate some of its properties. As application we give a q-sampling theorem which extrapolates functions defined on qn and 0 < q < 1.

متن کامل

Optimal Spectral Schemes Based on Generalized Prolate Spheroidal Wave Functions of Order -1

We introduce a family of generalized prolate spheroidal wave functions (PSWFs) of order −1, and develop new spectral schemes for second-order boundary value problems. Our technique differs from the differentiation approach based on PSWFs of order zero in Kong and Rokhlin (Appl Comput Harmon Anal 33(2):226–260, 2012); in particular, our orthogonal basis can naturally include homogeneous boundary...

متن کامل

Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs

We examine the merits of using prolate spheroidal wave functions (PSWFs) as basis functions when solving hyperbolic PDEs using pseudospectral methods. The relevant approximation theory is reviewed and some new approximation results in Sobolev spaces are established. An optimal choice of the band-limit parameter for PSWFs is derived for single-mode functions. Our conclusion is that one might gai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011